python_codes.linear_theory.calculate_solution#

calculate_solution(eta, eta_H, eta_0, eta_B, Fr, max_z, Kappa=0.4, output='simple', **kwargs)[source]#

Solve the system and apply the boundary conditions.

Parameters
  • eta (scalar, numpy.array) – vector of vertical non dimensional positions \(k z\) where to calculate the solutions.

  • eta_H (scalar, np.array) – Non dimensional boundary layer height \(k H\).

  • eta_0 (scalar, np.array) – Non dimensional hydrodyamic roughness \(k z_{0}\).

  • eta_B (scalar, np.array) – Non dimensional stratification length \(k L_{B}\).

  • Fr (scalar, np.array) – Froude number

  • max_z (scalar, np.array) – Maximum vertical position where the system is solved, and also where the boundary conditons are applied. Usually set to something slightly smaller than eta_H to avoid the very slow resolution close to the top of the boundary layer. Usefull when investigating the solution close to the bottom.

  • Kappa (float, optional) – Von Karmàn constant (the default is 0.4).

  • output (string, optional) – changes what returns the function (default is ‘simple’).

Returns

If output is ‘simple’, return an array with the solution in every vertical step specified by eta. If output is ‘full’, return a list whose elements are: - the array with the solution in every vertical step specified by eta. - the output of _solve_system. - the coefficients of the linear decomposition of the solution.

Return type

np.array, list

Examples using python_codes.linear_theory.calculate_solution#